
Measured a biotite 
compostion?
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deep learning!
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Challenge: How to callibrate a metamorphic thermobarometer?1. INTRODUCTION & METHODS

Challenge: How to determine independent reference P–T estimates to test predictions against?2. TESTING THE THERMOBAROMETER

3. CONCLUSION

Metamorphic thermobarometry
= Pressure (P)–Temperature(T) estimation of:
- Equilibration of a rock
- Mineral recrystallisation

Addresses fundamental petrological questions:
- Understanding geochemical processes
- Reconstructing geodynamic evolution

1. Fit the parameters of a reaction
Typically experimental data
- Net-transfer or exchange reactions [2,3]

- Trace element incorporation [4]

2. Statistical relation in large datasets
Natural or experimental data
- Ti-in-Bt thermometer [5,6]

- Magmatic thermometer [7,8]

(+) Natural complexity (-) Independent P–T needed

(-) High T
(-) Simplified system

(+) Exact P–T

How to callibrate a thermobarometric funtion? Use a database of natural metamorphic biotite:
Pattison & Forshaw (in prep.)
- 2148 natural biotite analyses
- 126 metamorphic sequences

Use the systematic order of mineral occurence in 
metamorphic sequences to obtain P–T estimates[9,10]:
- P: Mineral assemblage sequence (MAS)
- T: Index mineral zone

Statistical model:
- Neural Network (syn. deep learning)

Learn more about the machine-learning 
algorithm in the box below.

Samples with multiple lines of evidence
TG8C-03 + 8 samples with reference P–T from:
 - Phase equilibrium modelling
 - Iterative thermodynamic modelling
 - Empirical thermobarometer
 - Non-traditional thermobarometry
   (QuiG, Zr-in-Rt)

Sample TG8C-03
Granulite-facies metapelite from Higher Himalayan 
Crystalline Sequence (Sikkim, India) [11,12].

Reference peak P–T  from iterative thermodynamic 
modelling (Bingo-Antidote) [13]:

T = 790 °C and P = 0.64 GPa
Two biotite compositions from different cogenetic 
assemblages present in the samples.
Propagate compositional variance to P–T estimates:

Figure 2.1. Distribution of P–T estimates for TG8C-
03. Red triangles mark reference metamorphic 
conditions determined by iterative thermodynamic 
modelling [13]. For T estimates by the two Ti-in-Bt [5,6]

thermometers are shown as comparison.

Figure 2.2. Comparison of the P–T predicted by the 
biotite thermobarometer and the conditions reported 
by the original authors for the a test set of nine 
samples.

Figure 2.3. Predicted P–T for biotites from 
three metamorphic sequences tested. 
Boxes mark the reference P–T of a index 
mineral zone in a MAS after Pattison & 
Forshaw (in prep.). If multiple biotites were 
measured in one zone the mean P–T and 
standard deviation are shown ontop of the 
individual predictions. For all sequences the 
predicted T increases upgrade as expected 
and overlaps with the reference. P is 
overestimated in the low P sequence (MAS 
2a) and underestimated in the high P
sequence (MAS 4a/4b/5). These 
discrepancies may result form inherent 
complexity and polymetamorphism in the 
sequences used to callibrate and test the 
thermobarometer.

Figure 1.2. Example of three metamorphic 
sequences. Index minerals define zones in T. 
Whereas the sequentail order of the index minerals 
occuring is indicative of P.

Figure 1.1 P–T predicted 
based on a compositional 
map of biotite in the 
metapelitic Croveo Schist 
from the Central Alps [1].

Figure 4.1. Effect of 
different model capacities 
on the perfromance. A 
larger model, with more 
trainable parameters, can 
approximate relations in 
the training dataset 
better. By overfitting to 
the training data its 
performance on a 
validation set decreases 
with training. The learned 
function is not a generally 
valid thermobarometer.

Figure 4.2.  Different 
methods to assign P–T
based on a zone/MAS 
pair the natural data 
were tested: (1) a 
central estimate for P
and T, (2) random 
sampling P and T from 
a uniform distribution, 
(3) random samplingT
from a distribtuion 
ordered after Ti-in-Bt [5].

Metamorphic sequences:
Individual estimates for P–T are unprecise.
The sequential relation of samples adds the 
additional constraint, that T must increase upgrade.

Accuracy check of P–T estimates
- Over wide P–T range
- Assert systematic errors

Developed a coupled biotite thermobarometer using 
deep learning.

- Precise and accurate thermometer:
   ΔT = ± 29 °C
- Barometer can provide rough estimate:
   ΔP ≈ ± 0.2 GPa
- Systematic underestimation of P > 0.65 GPa

Metamorphic sequences can be used to 
approximate a thermobarometric function.

Thermobarometer can be tested using 
samples with differnet independently 
determined P–T estimates.

Each neuron is a linear 
transformation, followed by a non-
linear activation function.
Train by fitting parameters of linear part:
- Weights (slope)
- Biases (intercept)

Complex functions emerge by
1. Neurons working in parallel
2. Concatenating layers of neurons

For an optimal performance hyperparameters must be tuned by systematic testing on a validation dataset.

Deep Learning
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The neural network takes a 
compositional vector (C) as 
input and outputs a P–T-vector.

An intermediate layer 
consist of 16 computational 
units, the neurons.

Each neuron transforms 
the its inputs by simple 
mathematic functions and 
outputs an activation.
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