Understanding the process forming subglacial overdeepenings: The Rhone Glacier Lake example Siro L. Hosmann, Flavio S. Anselmetti, Stefano C. Fabbri, Marius W. Büchi University of Bern, Institute of Geological Sciences & Oeschger Centre for Climate Change Research, Baltzerstrasse 1+3, 3012 Bern, Switzerland

UNIVERSITY

OF BERN

Introduction

Unterstanding processes such as overdeepenings are important, but the clarity is mostly hidden in the subsurface (Magrani et al., 2020). In general the reconstruction of landscapes formed by glaciation is very complex and rather challenging (Büchi et al., 2018). Because of this poor understanding, we try to comprehend the process in more details.

Aim of the study

- How does an overdeepened basin look like?
- How does very young overdeepened till looks like?
- Whats the ratio of sedimentation to erosion?

Methods

Reconstruction of the melted glacierfront with subaquatic moraines

Study site

Fig. 1: Retreat of the Rhone Glacier since the year 2000 (edited, ©swisstopo)

- Proglacial lake of the Rhone Glacier, canton of Valais, Switzerland
- Was built due to meltwater and spring inflow into an subglacial overdeepening
- Fast melting leads to a very young proglacial lake
- Same lake was already measured in 2015, since then the size increased to the double

Fig. 3: Survey platform with attached Multibeam Echosounder

Fig. 4: Uvitec coring device, the weight (dark grey) gets pulled up by hand, releasing the weight the plastic liner plunges into the sediments

Bathymetry

- Use of a Multibeam Echosounder to create a bathymetric map (Fig. 3)
- With help of the bathymetric map we get knowledge about depths, bottom density and the diffrence compared to 2015

Coring

- Use of a handcorer (Fig. 4) with plastic liners to take short cores of glacial sediments **Radardata**
- Analysis of radar data (by A. Bauder) of the bottom of the Rhone Glacier

Results

Depth Rhone Glacier Lake 2021

- In the bathymetric map we can see several geomorphical features that shows the glacier retreat
- The interpreted end moraines are very likely correlating with the retreat shown in Figure 1
- In the point cloud one can see that the bottom of the lake is going further down, means the overdeepening of this part goes downwards even more under the glacier front
- The bathymetric data shows a pretty good image of the submerging glacierfront

Fig. 6: Sedimention/erosion diffrence map, datasets compared from 2015 and 2021. Positive values mean sedimentation, negative (blueish) erosion.

- The diffrence map shows a comparison of 2015 and 2021, related to the sedimentation and erosion
- Almost everywhere deposition, mostly in the main overdeepening in the middle of the lake

The main inflow from the eastern side built a subaquatic channel

• Possible sedimentation over the glacier front at some parts

• Less sedimentation because of the outflow in the south, where finegrained sediments get carried away

Conclusion

- Different standings of the glacier can be detected, also compared the retreat (see Fig. 1)
- Glacier is forming generally one main overdeepening, but within many small ones, as one can see at the northern tip of the lake, where (compared to 2015) occurs a new deepest part of the lake
- Despite the high density of the till, short cores could be retrieved

Outlook

- Analysis of the cores; making a logsheet
- Get in touch with the correlation of the glacier levels and the sedimentation (with the use of the diffrence map)
- Comparison with the radar data of the glacier bottom

References

Buechi, M.W., Graf, H., Haldimann, P. et al. Multiple Quaternary erosion and infill cycles in overdeepened basins of the northern Alpine foreland. Swiss J Geosci 111, 133–167 (2018). https://doi.org/10.1007/s00015-017-0289-9

Fabio Magrani, Pierre G. Valla, Natacha Gribenski, Elena Serra, Glacial overdeepenings in the Swiss Alps and foreland: Spatial distribution and morphometrics, Quaternary Science Reviews, Volume 243, 2020, 106483, ISSN 0277-3791, https://doi.org/10.1016/j.quascirev.2020.106483

siro.hosmann@students.unibe.ch

Institute of Geological Sciences Baltzerstrasse 1+3 3012 Bern

March 2022