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Introduction
Reactive Transport Modelling is a powerful tool for the investigation of geochemical processes

and phenomena. Typically, the modelled system is discretized into reaction cells (voxels), in

which the chemical speciation and phase equilibrium is calculated at each simulation time

step, followed by a mass transfer step between the cells. The speciation can be calculated

with a geochemical solver, such as PHREEQC or GEMS. Such calculations are very time

consuming in comparison with the mass transport step, and force the user to simplify the

modelled system. A possible solution to speed up these calculations could be the usage of

artificial neural networks, which can be trained to forecast the geochemical speciation (output)

based on a certain input (e.g. amount of dissolved elements).

This master thesis aims to study the performance end efficiency of artificial neural networks

(ANN) for geochemical modelling and to evaluate the quality of the resulting reactive transport

modelling. Furthermore, a comparison between different ANN structures and their accuracies

for geochemical calculations in systems of different complexity shall be made.

Methods

• Input/Output: Matrices of data; an ANN is trained to predict an output based on a given input

• Neuron: Smallest computational unit; consists parametrised mathematical functions, whose 

coefficients  are optimised during training

• Layers: Set of neurons; one training epoch starts at the first hidden layer and updates the 

values of the neurons of all subsequent layers until the last layer (output layer) is reached

Results
Three systems of increasing complexity are presented to show potential usage of ANN for

reactive transport modelling. The first two systems are described in detail in (Prasianakis,

Haller, et al., 2020), while the results of the last one have not yet been published.

Case 1: Calcite dissolution
• System: Pore-scale simulations of calcite dissolution result in a permeability-porosity

relationship, which can be used for upscaling in order to evaluate macroscopic parameters.

The system is described in more detail in (Prasianakis et al., (2018).

• ANN benefits: No manual fitting required and easier upscaling

• Data: Porosity (input) and permeability (output), from microscale-simulations

• ANN structure: Simple, only one hidden layer with five neurons

• Accuracy: Excellent (see figures below)

Case 2: Lab-on-a-chip experiment
• System: An experiment in which celestine dissolution and precipitation in microchips is

controlled by the inflow of SrCl2 and Na2SO4. Reactive transport simulations help to

quantify where and how much celestite precipitates/dissolves by calculating the saturation

index of celestite. See (Poonoosamy et al., 2019) for more details.

• ANN benefits: Several orders of magnitude speedup of the modelling compared to GEMS

• Data: Input: dissolved Sr and S; Output: saturation index of celestite

• ANN structure: Slightly more complex: two hidden layer with eight neurons each

• Accuracy: Excellent (see figures below)

Case 3: Calcite/dolomite precipitation and dissolution
• System: A more advanced system compared to case 1, including aqueous species and

mineral precipitation. It can be used to evaluate e.g. the interaction of groundwater with a

limestone. An application can be seen e.g. in (Guérillot & Bruyelle, 2019).

• ANN benefits: Considerable speedup compared to a geochemical solver

• Data: Input: dissolved CaCO3, MgCl2 and CO2; Output: aqueous speciation of Ca, C, Mg

and Cl, pH and precipitated calcite and dolomite

• ANN structure: Four hidden layers with 25 neurons each (see image in methods section)

• Accuracy: Varying, depending on output species; not sufficient for e.g. precipitation of

dolomite (see figure below)

Discussion & Conclusions
• Artificial neural networks can be trained to give reliable predictions for simple systems (like

case 1 and 2 in the results section). Systems with multiple inputs and outputs, however,

could not entirely be described by ANN so far.

• Small ANN (with only few hidden layers and neurons) provide faster calculations, while

larger ANN are often able to provide better accuracy. For the quite small ANN of the lab-on-

a-chip experiment, a speedup of up to 104 has been achieved compared to full geochemical

speciation calculations with GEMS. In other words, if GEMS made 0.001M predictions/s, an

ANN would make approximately 10M predictions/s. This enormous speedup is so far the

biggest advantage of using ANN in reactive transport modelling.

• It might be time consuming to create and train an ANN, since a new ANN needs to be

trained for every different system. However, suppose a geochemical calculation requires 1

day with a trained ANN, then the few days or weeks of training are only a small fraction of

the 27 years GEMS would need instead for the calculation. The potential of ANN for more

complex geochemical systems is currently still under exploration; however, a lot of progress

in ANN and machine learning in general has been obtained in the last few years and even

more will certainly be made in the recent future.
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• Figures IV to VII: Prasianakis, Haller, et al., 2020

Select/create data (with e.g. GEMS)

Choose appropriate scaling/pre-processing

of inputs and outputs

(III) From raw data to a reactive transport modelling implementation

Create ANN structure (especially determine number 

of hidden layers and neurons per layer)

Train the neural network until a maximum degree of 

accuracy is reached

Evaluate the quality/accuracy of the ANN with 

respect to the target data of the geochemical solver

Implement the ANN in reactive transport modelling, 

with the aim to substitute the geochemical solver

• ANN need to be trained for each geochemical system in an iterative, time-

demanding process

• Well designed and trained ANN give accurate predictions and are still small 

enough to provide a considerable speedup compared to the geochemical solver

Accuracy sufficient?  yes

no

(VII) Mapping of saturation ratio difference (%) of ANN 

compared to geochemical solver in modelled microchip

(VI) Accuracy comparison between geochemical 

solver (LMA), lookup table interpolation and ANN

(VIII) Prediction of precipitated dolomite, with constant MgCl2 concentration
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(V) Reactive Transport Modelling results obtained with 

ANN and with power law fit(IV) Porosity – Permeability correlations for 

calcite dissolution modelling
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